Deep Learning & Neural Networks

Austin Blodgett, Georgetown University

a family of algorithms

NN Task	Example Input	Example Output
Binary classification		
Multiclass classification		
Sequence		
Sequence to Sequence		
Tree/Graph Parsing		

NN Task	Example Input	Example Output
Binary classification	features	+/-
Multiclass classification	features	decl, imper,
Sequence	sentence	POS tags
Sequence to Sequence	(English) sentence	(Spanish) sentence
Tree/Graph Parsing	sentence	dependency tree or AMR parsing

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl et al. (2010)

Acoustic model	Recog WER	RT03S FSH	Hub5 SWB
Traditional features	1-pass –adapt	27.4	23.6
Deep Learning	1-pass –adapt	18.5 (-33%)	16.1 (-32%)

(Slide from Manning and Socher)

Deep Learning for Computer Vision

Most deep learning groups have focused on computer vision (at least till 2 years ago)

The breakthrough DL paper: ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.

17

tabby

Zeiler and Fergus (2013)

(Slide from Manning and Socher)

Reasons for Exploring Deep Learning

- In ~2010 deep learning techniques started outperforming other machine learning techniques. Why this decade?
- Large amounts of training data favor deep learning
- Faster machines and multicore CPU/GPUs favor Deep Learning
- New models, algorithms, ideas
 - Better, more flexible learning of intermediate representations
 - Effective end-to-end joint system learning
 - Effective learning methods for using contexts and transferring between tasks

→ Improved performance (first in speech and vision, then NLP) (Slide from Manning and Socher)

Perceptron

Perceptron

FFNNs

Feed Forward Neural Net – Multiple layers of neurons

- Can solve non-linearly separable problems
- (All arrows face the same direction)
- Applications:
 - *Text classification* sentiment analysis, language detection, ...
 - Unsupervised learning dimension reduction, word2vec

How do I interpret an NN?

- An NN performs *function approximation*
- Connections in an NN posit relatedness
- Lack of connection posits independence

What do the weights mean?

- Functional perspective these weights optimize NN's task performance
- Representation perspective weights represent unlabeled, distributed knowledge (useful but not generally interpretable)

Can an NN learn anything?

• No, but ...

Theorem: 'One hidden layer is enough to represent (*not learn*) an approximation of any function to an arbitrary degree of accuracy'

Given infinite training data, memory, etc.)

• What happens if I make an NN deeper?

Width controls overfitting/underfitting

Depth allows complex functions, can reduce overfitting

Exponential Representation Advantage of Depth

(Goodfellow 2017)

activation functions

Activation function – "squishes" neuron inputs into an output

- Use in output layer Sigmoid (binary class), Softmax (Multiclass)
- Use in hidden layers ReLU, Leakey ReLU

training

• To train an NN, you need:

- Training set ordered pairs each with an input and target output
- Loss function a function to be optimized, e.g. Cross Entropy
- Optimizer a method for adjusting the weights, e.g. Gradient Descent

Gradient Descent – use gradient to find lowest point in a function

backpropagation

Backpropagation = Chain Rule + Dynamic Programing

Loss function – measures NN's performance.

Adjust weights by gradient (using a *learning weight*) of the loss. Save repeated partial computations along the way.

$$\Delta w_i = \frac{\partial}{\partial w_i} Loss(f(\mathbf{W}, \mathbf{V}, \dots, \mathbf{x}), target)$$

loss functions

- Loss function measures NN's performance.
 - Probabilistic interpretation
 - Binary output Binary Cross Entropy and Sigmoid
 - Multiclass/Sequence output Categorical Cross Entropy and Softmax
 - either Generative or Discriminative
 - Geometric interpretation
 - Mean Squared Error or Hinge Loss (like in Structured Perceptron)

RNNs

Recurrent Neural Net - Model a sequence of any length

- Weight sharing, Unlimited history
- (also LSTM, GRU, Bidirectional)
- Applications:
 - Language models
 - Language Generation
 - Sequence classification Part-of-Speech tagging
- Not just words (characters, structured data, ...)

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

 $\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\acute{e}tale}$ we have

 $\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$

where \mathcal{G} defines an isomorphism $\mathcal{F} \to \mathcal{F}$ of \mathcal{O} -modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

 $b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- (1) \mathcal{F} is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

RNN Language Model

Weight Sharing

RNN Dimensions

RNN Part-of-Speech Tagger

How is an RNN different than HMM?

RNN Part-of-Speech Tagger

How is an RNN different than HMM? Unlimited History

Compact diagram

Encoder-Decoder models

- Encoder-Decoder model (also Seq2Seq) Take a sequence as input and predict a sequence as output
- Input and Output may be different lengths
- Encoder (RNN) models input, Decoder (RNN) models output
- Applications:
 - Machine Translation
 - Morphological Analysis

Encoder (English)

Decoder (French)

Embeddings

- Embeddings Dense vector representations of words, characters, documents, etc.
- Used as input features for most Neural NLP models
- Prepackaged Word2Vec, Glove
- Use pre-trained word embeddings *and* train them yourself!

Some References

- •NN Packages <u>TensorFlow</u>, <u>PyTorch</u>, <u>Keras</u>
- Some Books
 - Goldberg book (free from Georgetown)
 - Goodfellow book (Chapters and Videos)