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Binary features +/-
classification

Multiclass features decl, imper, ...
classification

Sequence sentence POS tags
Sequence to (English) sentence | (Spanish) sentence
Sequence

Tree/Graph sentence dependency tree or
Parsing AMR parsing




Deep Learning for Speech

* The first breakthrough results of

“deep learning” on large Phonemes/Words
datasets happened in speech

recognition
* Context-Dependent Pre-trained

“I
Deep Neural Networks for Large
Vocabulary Speech Recognition "’—"—‘—.

Dahl et al. (2010)

Acoustic model Recog | RTO03S Tt
WER FSH |

— ——

Traditional l-pass 27.4 23.6
features -adapt
Deep Learning 1l-pass 18.5 16.1 L

-adapt (-33%) (-32%)

(Slide from Manning and Socher)




Deep Learning for Computer Vision

Most deep learning groups
have focused on computer vision
(at least till 2 years ago)

The breakthrough DL paper:
ImageNet Classification with Deep
Convolutional Neural Networks by
Krizhevsky, Sutskever, & Hinton,
2012, U. Toronto. 37% error red.

Zeiler and Fergus (2013)
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Reasons for Exploring Deep Learning

* In~2010 deep learning techniques started outperforming other
machine learning techniques. Why this decade?

» Large amounts of training data favor deep learning

* Faster machines and multicore CPU/GPUs favor Deep Learning

* New models, algorithms, ideas
» Better, more flexible learning of intermediate representations
« Effective end-to-end joint system learning

« Effective learning methods for using contexts and transferring
between tasks

- Improved performance (first in speech and vision, then NLP)
(Slide from Manning and Socher)
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Perceptron
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FFNNs

"Feed Forward Neural Net — Multiple layers of neurons
" Can solve non-linearly separable problems
= (All arrows face the same direction)
= Applications:
= Text classification — sentiment analysis, language detection, ...
= Unsupervised learning — dimension reduction, word2vec
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FAQ

"How do | interpret an NN?
= An NN performs function approximation
= Connections in an NN posit relatedness
= Lack of connection posits independence




FAQ

=\What do the weights mean?
= Functional perspective — these weights optimize NN’s task performance

" Representation perspective — weights represent unlabeled, distributed
knowledge (useful but not generally interpretable)




FAQ

=Can an NN learn anything?
=No, but ...

Theorem: ‘One hidden layer is enough to represent (not learn) an
approximation of any function to an arbitrary degree of accuracy’

= (Given infinite training data, memory, etc.)



UIPIM

FAQ

=\What happens if | make an NN deeper?

Width controls
overfitting/underfitting

Depth allows complex
functions, can reduce
overfitting




Exponential Representation
Advantage of Depth

(Goodfellow 2017)



activation functions

= Activation function — “squishes” neuron inputs into an output

= Use in output layer — Sigmoid (binary class), Softmax (Multiclass)
= Use in hidden layers — ReLU, Leakey RelLU

Sigmoid ReLU (Rectified Linear Unit)




training

=To train an NN, you need:
" Training set - ordered pairs each with an input and target output
= Loss function - a function to be optimized, e.g. Cross Entropy
= Optimizer - a method for adjusting the weights, e.g. Gradient Descent

Gradient Descent — use gradient
to find lowest point in a function - | —




backpropagation

= Backpropagation = Chain Rule + Dynamic Programing

Loss function — measures NN’s
performance.

Adjust weights by gradient (using a learning )
weight) of the loss. Save repeated partial
computations along the way.

Aw; = 837; Loss(f(W,V,...,x), target)



loss functions

" Loss function — measures NN’s performance.
= Probabilistic interpretation
= Binary output - Binary Cross Entropy and Sigmoid
= Multiclass/Sequence output - Categorical Cross Entropy and Softmax
= either Generative or Discriminative
= Geometric interpretation
= Mean Squared Error or Hinge Loss (like in Structured Perceptron)
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RNNs

= Recurrent Neural Net - Model a sequence of any length
= Weight sharing, Unlimited history
= (also — LSTM, GRU, Bidirectional)
= Applications:
" language models

= Llanguage Generation
= Sequence classification - Part-of-Speech tagging

" Not just words (characters, structured data, ...)




Proof. Omitted. O

Lemma 0.1. Let C be a sel of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(£L)

Proof. This is an algebraic space with the composition of sheaves F on Xy, we
have
@\(F) = {mm'phl X Oy (g}'}}

where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b X3 ¥ 3 ¥V a¥V 3 ¥ vV X,
be a morphisin of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox (U) which is locally of
finite type. O

This since F € F and = € G the diagram

S—

|

g

Oy

AN

20T,

Il
B
=
-

Spec(K ) Morges. d(Of\J_Uk .G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

o Oy is a sheal of rings.

O

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraie stacks. Then the
cohomology of X is an open neighbourhood of U, O

Proof. This is elear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Osp —Fz '1(6.\},0..; —%F 03:0.\',‘{0&“)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism,
The property F is a disjoint union of Proposition 77 and we can filtered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. O

If F is a finite direct sum Qx, is a closed immersion, see Lemma 77, This is a
sequence of F is a similar morphisim,
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RNN Language
Model
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Weight Sharing
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RNN Dimensions
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RNN Part-of-Speech Tagger
How is an RNN different than HMM?

VERB PRON PROPN PUNCT DET NOUN
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RNN Part-of-Speech Tagger
How is an RNN different than HMM?
Unlimited History

VERB PRON PROPN PUNCT DET NOUN

[ 1 1 1 1 |
o & & 0 0 ¢

A.. . @ O

Call me Ishmael Some years



Compact diagram

Output
Text

.
®

Input
Text

me Ishmael : Some years ago

| 1 1 1 ]
® 0 o . ® O

Call me Ishmael Some years




Encoder-Decoder models

*Encoder-Decoder model (also Seq2Seq) — Take a sequence as
input and predict a sequence as output

" Input and Output may be different lengths
"Encoder (RNN) models input, Decoder (RNN) models output
" Applications:

" Machine Translation

= Morphological Analysis
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Embeddings

*Embeddings - Dense vector representations of words, characters,
documents, etc.

= Used as input features for most Neural NLP models
" Prepackaged — Word2Vec, Glove
= Use pre-trained word embeddings and train them yourself!




Some References

*NN Packages — TensorFlow, PyTorch, Keras

=Some Books
* Goldberg book (free from Georgetown)

* Goodfellow book (Chapters and Videos)




